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PROBABILITY LIMIT THEOREMS AND THE CONVERGENCE OF
FINITE DIFFERENCE APPROXIMATIONS OF PARTIAL DIFFERENTIAL EQUATTONS

Harold J. Kushner

Introduction

The Equations to be Considered

This paper is concerned with the application of certain conver-
gence theorems (for probability measures on spaces of continuous
functions) to a problem in the convergence of finite difference
approximations to partial differential equations.

Let G be a bounded open set in R" (Euclidean r-space) with
a continuous boundary &G, and let k(+) and @(¢) be non-negative
continuous functions on R (and, occasionally, when the argument +t

r+l
)

appears, on R . Congider the possibly degenerate elliptic or

parabolic equations of either of the forms (1) - (3).

2= Y a,.(x) B £ T £ (1)
LV(x) = k(x), V(3G) = ¢(35) (1)
LV(x) - BV(x) = k(x), V(36) = ¢(da) (2)
Vt(x,t) + LV (x,t) = k(x,t), V(x,t) = ¢ (x,T) (3)

V(d,t) = 9(3G,t), t < T.




Note that 'time' flows backward in (3); a simple transformation
converts it into the more standard problem. One of the main results
of the vaper concerns the convergence of finite difference approxima-

tiong to (i) - (3), as the difference interval goes to zero.

Probabilistic Interpretation

(1) -~ (3) can be given a probabilistic but physical interpretation.
In fact, this 'physical' probabilistic interpretation will be used very
heavily in the interpretation of the finite difference equations, in
the motivation of the development, and in the convergence proofs. Let

z, be a vector of independent Wiener processes (thus Eztz% = It),

t
and let X, be the solution to the Ito stochastic differential equa-

tion (Doob [1], Chapter 6)

dx

5 = f(xt)dt + G(Xt)dzt’ ()

where f£(-) and o(.) are bounded by a real number K and sat.sfy

a uniform Lipschitz condition; e.g.,

|1 £(y) - £(x)| = K|y-x

x, can be defined to be continuous w.p.l. and satisfy the

t
properties  (Doob [11)

*0(t) is of the order of t and o(h)/h -0 as h -»0.
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E max Elxs-xol = 0(t)

tz2s20
E(xh-xo|xo) = f(xo)h + o(h)

cov (xh-xo|xo) = a(xo)a'(xo)h + o(h).

Define the matrix a(x) by 2a(x) = o(x)o'(x) = (aij(x)} and

let T be the rahdom time at which the diffusion x first reaches

the boundary &G, for x, = X € G, and suppose that E T < = Then,

0
with Ex denoting the expectation given the initial condition

x. = x, under certain conditions (1) - (3) have the unique solutions

0
(1a) - (3a), resp. (Dynkin [2], Chapter 13).

T ,
V(x) = E, é k(xs)ds + Efv(xt) | (1a)
T -Bs BT
V(x) = E_ é e "k(x )ds + E e™ p(x.) (2a)
™M=
V(x,t) = B, o 1f; k(xg,s)ds + Ey 4@ (Xgp 0o 0T (3a)

where we define t N s = min (t,s), and in (3a), E, . implies that
]
Since we allow {aij(x)] to be degenerate, by letting t be
the r + 1 st coordinate of x, (3) becomes a special case of (1).
Then the cylinder G x [0,T] = G replaces G in (L) and T N 7, the

finite escape time from G replaces T in (1). Thus, we will not



treat (3) separately.

The conditions under which (1) - (3) are known to have solutions
which are smooth enough to satisfy (1) - (3) (strong solutions) are
quite restricted, in particular, full ellipticity of £ is genmerally
requ’ ~ed. Yet, in rather typical situations, this condition is
violated, This occurs almost all the time in stochastic control
theory, where, in fact, one uses (1) - (3) to represent the cost
functions (la) - (3a), and hopes to solve (1) - (3) in order to ob-
tain (la) - (%a). For a particular case, consider the formal

differential equation
(r) (r-l) L N} -
y'U e, Y teeet C oy = OF (5)

where ¢ 1is 'white Gaussian noise'., Putting (5) into the form (4)

yields
\ o —
ax) 0 . . 0 0
. = dx = 0 0 0 . . 1 xdt + 0 dz -t
dx - _ .
r ‘0 * * * ®n-1 o
- A
T |
and a,. =0, unless i=j=r,
1J
Of course (1) - (3) may be derived from other than stochastic

considerations. Yet, still, unless we know that there is a solution

'l [V

to (1) - (3) with suitably smooth derivatives, and have an appropriate

oy W

discrete maximum principle available, the usual methods (see, e.g. [3])
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£
g
£
5




wmiiadr
.

for proving convergence of the finite difference approximations, as
the difference interval converges, do not apply. Nevertheless, for
each difference interval, the finite difference equations approaimat-
ing (1) - (3) may still have unique solutions, and i1 1s meaningful
to ask whether the solutions converge to (la) - (3a), as the interval
decreases to zero.

This problem will be treated by a probabilistic method. We
also note that even if £ is the Laplacian, classical proofs of con-
vergence cannot be used if G has corners, since then the second
derivatives may not be uniformly continuous in G.

Section 2 describes the finite difference equations to be used,
and gives a useful probabilistic interpretation of them. The method
of proof is described, and main theorems stated in Section 3.

The theorems use sonie general conditions which are quite common
in applications. This is illustrated in the typical (degenerate
elliptic) example of Sestion 4, Proofs of the theorems appear in the
appendix, The treatment of the discounted problem (2) - (2a) is

similar to that of (1) - (la) and will not be given.

2. Finite Difference Equations and Markov Chains

Terminology

s —
- o

For equation (1) let the difference interval be h (in any

coordinate direction+) and let e; be the unit vector in the ith

+'I‘his is for convience in development. The difference interval can
certainly depend on the direction.
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coordinate direction. suppese that o is strictly contained in a
hypercube H with sides [-A,A]. Define the set of nodes R in
R" by RE = {(uh,...,n h), n, ranging over O, 11, t2,...}.
Define G, = G N Ry.

In order to «xpose the method, and not get involved with the
rather long finite difference equutions arising when mixed second
derivatives oceur, we let oy, =0 for i # J. There is mo trouble

in extending the method to the more general case.

Form of the Finite Difference Equations

The following finite difference approximations will be used.

V(x+eih) - V(x)
(6a)

<

2
fny B o
-

* V(x) - V(x-e h)

where the upper term of (6a) is used if fi(x) z 0, and the lower
otherwise. (This usage will be carried throughout, upper entries in

{ )} always used if fi z 0, ete.)
V, . (%)~ [V(xtesh) - 27(x) + V(x-e.h)]/n" (6b)

X, X,
1 1

The reason for the choice (6a) will appear shortly.

If Vh(x) denotes the solution to the finite difference equa-

tions, then using (6) for x e Gy (1) yields

¢
i
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L 844 £ ) Vpleregh) - Vp(x)
. h) - 2V, (x V. (x-e.h ¥
0 %F [V, (x+e,h) p (%) + Vp (x-e,h)] + R Vh<x) - vh(x'eih)

+ k(x)
or, by collecting terms
b ) = 2 Vi, (x+e,h) | h|f,] +'a;, . Vh(x-:ih) 8y (1p)
i o) By i ) hlf| + 8y,

where Q,h(x) = 2):_"-1 By * E h|f Define Vh(x) =@(x) for x e Ri - Gy o

il
Rewrite (1b) as (with the obvious identification of terms)

Vh(x) s >::1: Vh(x+eih)ph(x,x+eih) + Zi', Vb(x-eih)pn(x,x-eih) + ph(x)k(x)

(1c)
V(x) = p(x), for x € R; - Gpo

Now the reason for the choice (6a) will become clear, Note that
since the ph(x,'y) z 0 and sum to at most unity, and can be defined
for all x,y € R.:;, they can be considered to be transition probabilities
for a Markov chain on the grid R}!;. This is the setup used in (Kushner,
Kleinman [4]), where problems ccncerning the computation of solutions

of non-linear versions of (lc) were considered,

Denote the sequence of random variables of this Markov chain by

h h h
{gk]. Thus P[§k+l =g+ hei} = ph(x,x+eih), etc., Define




g

i

H

. h '
N, = inf [k & £ Gy

Now we proceed to investipgute the behavior as h -» 0, Suppoae+

EN, <K < The solution to (lc) can be written as [L4]

§

-1
Nh

) = By T oy (EK() + B0ty ). (14)

3, The Method

The probabilistic interpretation (la) of (1), and the probabilis-
tic interpretation (1d) of the finite difference system (lc), as well
as the similarity of the form (ld) to a Reimann sum approximaticn to
(la), suggest that one could ‘treat the convergence problem as a problem
in the convergence (in & suitable sensa) of the measures associated
with (gﬁ} to that of {xt]. In fact this procedure is quite fruit-
ful, and much of the sequel is devoted to setting the problem up so
as to use the following theorem of Gikhman and Skorokhod [5],
Chapter 9, (Actually, Theorem A is a composite of seversal theorems L

of [5], Chapter 9, Sections 1,2,)

Theorem A, Iet C[0,T] = Q be the set of R® wvalued continuous

functions on the interval [0,T]. Let ¥ (t), y(t), t € [0,T] be I

continuous<grocesses with Paths in the (tqgological)gpace Re EEE

*This is not restrictive in applications (see [4])., In fact the con-
dition is implied by condition (11) of Theorem 3 which is also natural

in applications (see Example)
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u and p be the measures induced on O by the processes ()

and y(-), resp, Let (for 0 = t' & t" s T)

lim Tim Px[ sup lyn(tr) - yn(t")| z2e€e>0}=0 (*)
350 n |tr-t" |2

for any € > O, Let the finite dimensional distributions of

(yn(t)} converge o these of y(t). Let F(+) be a bounded and

continuous (w.p.l.) functional on the topological space Q. Then

EF(y" (+)) > EF(y(+)).

In the Appendix and section on convergence, Theorem A is ex-

ploited and extended to yield a solution (Theorem 3) to our problem,

The example illustrates that the conditions of Theorem 3 are quite

natural for a very large class of problems. "'
In order to exploit Theorem A, the process (g::] must be re-

lated to a suitable continuous time process {gh(t)}.
By a comparison of (1d) and (la), we note that the 'discrete

time' cost rate is ph(x) times the continucus time cost. In an

intuitive sense, one step of the discrete process g; should take

ph(gz) units of real time., Thus the following definition is natural.
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Define the time sequence (ti] by* (sometimes arguments of functions

are deleted for simplicity)

h_ b, hy h

Define a process gh(t) by

h,.h h
at the times [tk}, and for tk st < t 19 by the linear interpolation
h,.
n p o (- tk) Ei\ Per1” k)
£ (6) = &y q :
At(gk) At (&)

Thus the continuous process gh(t) is piecewise linear and changes

¥
Pttpiian

slope at the E&EEEQ break pcints (tk} only. A

The use o1’ gh(t) is a natural way of relating {gi} and Xy
This can be seen from the last part of the following remark and from
the calculations (8), which indicate that the drift and diffusion co-

efficients of gh(t) converge to those of the X, Dprocess as t -0,

-+

We use ph(gi), Ami and Amh(gi) interchangeably., Also, sometimes
the srguments of fi and aii are omitted,
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Remark, To illustrate the random time scaling, consider the

scalar example where
dx = -xdt + odz

and

2
- Voo - XV, + k(x) =0,  V(A) = V(-A) = O.

For x = nh, n > 0, the discrete equations reduce to

[02 2+xh 02 2 h2
v, (x) = V, (x-h) b v, (o) B s o)t
o +xh o +xh o +xh

Vh(x-h)ph(x,x-h) + Vh(x+h)ph(x,x+h) + ph(x)k(x).

A simple discrete time (continuous state space) approximation

to X, is given by

e ~ ~ p ‘
Xl = Xy - XA T U[Z(n+l)A-znA]’ (1)

and E['}"Cn- t]g -0 as n - o, if nA remasins fixed at t. However,
while the time step, A, is constant, the one step jumps are unbounded.

as X n increases the average step size increases, etc. If we are to

bound the step size at each n (as we do with the process {52}

approximeting Xt) , We must restrict the time A at each n in some
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way which depends on the only known variable 'in'

This is clearly seen in the degenerate case o = 0, Then if

x7£0)

o (x) = h ~ h
“h [x] |velocity| 2

I'd

which is exactly the time which it takes a particle to move the
standard distance h, if the velocity were fixed at x during the
time of movement,

Equations (2) and (3) can be treated similarly to (1). For ex-
emple, applying (6) to (2), collecting terms, and dividing by the

coefficient of V(x) yields, for x € G,

Vh(x+eih) hlfil toag V (x-e ih)

R ol BT R ol BTPY Hay| @

+ /gy (%)

where

2 :
QBh(x) = 2 % a.. +h % |fi| + h°B., {

1l

-
[ ey

(2b) can be rewritten as

Vh(x) = rﬁh(x){il Vh(x+eih)ph(x,x+eih)

(2¢)
Vy, (%=, )P, (x,%-e,,) + @ (x)k(x)], :

g
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with boundary values defined as

V(x) = 9(x), x € By - G,

where

2
en(®) = (1 - 'QSZ‘&T) = (1 - Box) + 0(°)).

The solution to (2c) is the discounted cost

N -1
v =5, 2 ([r, (2)RED0, 6 + 5 <Nlhlr () (tg ). (2)
h X =0 i=0 Bh'~1i n’""h*n’ . °x n=0 Bh*°n Nh
o The convergence of (2d) to (2a) can be discussed along the same lines

N ]

as for equation (1), but will not be developed here.,

A Canonical Form For {g?).

Write the J°" component of . as . . With £ = t, the
H

transition probabilities p(x,xtefn) given by (1b) yield

2.
BLe., ,-8] &) = £]= 2;%‘%1 = o, (8)2(e). (8a)

Rt o

The average change in ﬁh(t) in time Amh(g) is merely the mean

drift of the diffusion (¥) times the time interval p, (&) = At™(¢),

1o

a further check of the naturalness of our time scaling.

Since the process gﬁ moves in only one direction at a time,

oS

N SN e AR BN e e
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h h o . .
=t .] can be non-zero for only one i. Thus the off diagonal
[Eyxin, 175k, 4

elements of the first matrix on the right of

h h h
o h ‘ h- _] _ E[ <gk+l-§)(§k+l-§)"§k = §]
OV [Eyyy8lE = B = e -
At (E

B[ (61, ,-8)] & = EIB[ (], -€)" & = &)

: = T (6) = (3, (0=

6" (8)
= o, (g)a] (¢)
are zero, Thus
h L2 . . .
Ly 34(8) = -t (€)f; (8)f, () = Oo(n7)  for i #J (8b)
)
while, for i =j (and using Qaii = ci)

2
%, 4, %28 + [BlE] - 6™ (6)£5 ]

s 1d 11 ¥

2 2y \.h i
AR EARNEATI O (80) ‘

2 .8

As a further check on the scaling of ¢(t), observe the
connection between the 'infinitesimal' properties of the [gﬁ} and 1
1 {xt] processes. l

v
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h hy. h
h =0 At (x) & =0
h b .h .
Cov (&, .= |t = x) Gov (X4-X)
1in k+l “k'°k 1im 8
m h = -* P
h =0 At (x) & =0

_ h h h
Next, we may write ¢, . as (recall At = p(gk))
h h ky, . h h
Brs = B+ TEIAY + By
where
: h h h, .. .h
Pe = Leerty - T(8)A ), BB = O,

Let j <k. Then E[ﬂf{ﬁjlgj,gj_’_l,gk] = 0 implies that {[Sj} is an

. orthogonal sequence. We next give a convenient representation for the

[RE)

'driving term' Bk.

There is ar orthogonal sequence {wﬁ] satisfying

<y

et

E[%I&Q,OOO,Ek] =0 and

h h h
E[mkml'{l Egreeesby] = IAL,

n L2 hy b

Bl = At L (&) (*)

1-
PR
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LTS S VAR R kY exTone, ginee then dorine
“d I8
_ Wi oE
b I‘ +
, /E\u}r ,” ’ H - * |
R _ ) .
Texh, ol /y fe ) pet exist, we chow (%) eder H10) o (00)
L
o Theopam L, ol v ol maedd b By (Bb-e) st (Ut) - (02),
, S , ) , ‘ .
nj s, (E)] co CEYPUCEY v B oomedl and ali R, Then , s
g RN . 3 . e ooy ﬂ\
(e} et (00) o 00w ceme i bhiat semidelMinthoness o I )
) Yo

. 5 o h N ¢!
requires thet some disconal clement be zero.  Thus, b, (F = t:(ak)
el + + K3 th y p - p
for some 1, But then, the i row and column of Zh arm zero, sond
oo ig 2 . .

4 . h L3 .,
Then by reorderins the states (at gk) and repeating the
™

argument, we may suppose that ﬁ = (ﬁk,l""’ﬁk,s)' = 0, ﬁy =

(. Q+1,.o.,ﬁk r) has linearly independent components and that
ot 1, 0,1

0 0
0 B, (&)
h'°k
Tinally, define wy = (B8, where & = B"l/ G ). Let \

s
~h . 4 . . ;
{mk} Le an independent s-vector Gaussman sequence with mean zero and

unit variance. Define @i =2 Amh w. Thus the generality of (*)

i is proved. i
b h, b, ,hy . <7/ hy b

‘ Next, note that from & o =& + 4ot F (6) + X (& )a I
: |
fa +Zh is uniformly dominated by (say) 1/2 of its diagonal matrix, for ‘
: small h.,

|




r

L3

we also have

. h h -
E[w @y eeeywy 1,601 = 0

h, hy,.h hh h
Efay ()" [, e ey 1,601 = TA.

Convergence Theorenms

Let measures My, and M (on the topological space @ = C[0,T]
correspond to processes gh(t) and xt, resp. t € [0,T]. The con-
ditions (Cl) - (CY4) used in the sequel are quite natural for a large

class of problems, and are illustrated in the example,

Theorem l, Assume

(c1) fi(g) and Gij<§) are uniformly bounded and

satisfy a uniform Lipschitz condition. (Recall & = ogo'.)

(C2) Let Bh equal h or he. For real positive

K. let
1 —
K. =2 Amh(s) 2 K8
lh ™ =/ = 72"t
(¢c3) Let a(t), have the form
0 0 0 0
a(t) = a(e) = Ty (8) = og(2)o" (2)
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-1
where ZO (¢) has uniformly bounded terms.

Then the finite dimensional distributions of the process ghf+)

converge to thoge of ‘the process X, and, for 0 & t' = t" 2 T, and

€>0,

lim TR P sup  |e(t) - £°(4")] 2 €) = O, (9)
8-0h-»0 " |t'-t"|=B

Remark. (C2) means the following. Either we allow

, in which case Sh = h2, or we

§ aii(g) z €, >0 for some real €,

allow % aii(&) =0 and % lfil z e, >0, in which case &, = h. Thus

2 cases are considered - one case in which there is always some
diffusion somewhere, and one case in which there is no diffusion -

but where the velocity of x, 1is never O. In the intermediate case

t

the ratio

mex A" (t)
E .
min Amh(g) |
: \

Y -~ PO

may be infinite, invalidating our proofs. The first case is one of
great importance.

For future reference, we note that (Cl1) - (C2) and (8b-c)

T R ey

T —
By such convergence, we always mean convergence at the points of con-
tinuity of the relevant distributions for the process Ko
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imply+ (for some real K)

TKE/bh
h | T-FO.
(ck) kéb loy (8) - o(,)|"8, = kh

and

/B h ho (248 8
) L -t $ KTh
(c3) =y b, 178, 1

for any >0 and i = l,ees,r,.

Corollary 1, Assume (Cl) - (C3). Let F(-) be a bounded con-
EECTma—— e e

tinuous function on C[0,T] w.p.l. (relative to u). Then' (with

§g=x=%)
EXF(gh(.)) =B Fx(:)

Theorem 2 uses condition (C6). (C6), Thewe is an hy >

for h <h,, G satisfies! Let 4 = (a,b) be a line connecting two

O so that

adjacent (along coordinate directions) points (a,b) of the grid R.. If

h.
e and b are both in G, then so is the line 4 connecting them,
(06) can be weakened in many ways - but there seems little point in

complicating the condition here. It is certainly satisfied (for any

+

For a vector x, |x|2 =2 x?. For a matrix o, |a|2 = L 8,4, Where
i i
(aij} = a = 0'0. Recall that o, (E)o}(E) =1, (¢).
g is the expectation given xo = X,



ho) doroeony = . A5 Y o aed boouadeee bhal the Livstb pusiu o

fimes reom i, ot both QE‘U,‘) v e! F;t are approximalely the ncame

gdme. Tece, 48 EM(4) beaven the G between the nth ang o+ 190
steps off Fx, then I‘!::; s e I i used to avold the possibliity
illnstrated by digure o (for ail ameil h), where it the sdlscrete
procaens Fﬁ Jumps from oot b ool time n, 44 has nel actually lef't

(:, but the interpelubed process #*(4) leaves right after time n.

Theorem 2, Asgume (C1) - (C3) end (C6)., Tet k(o) and ¢(.) be uni-

formly continuous end bounded on some open set containing G = G + &.

Let T denote the first (random) time that the process x, leaves

G (v = inf (t! x, £ G)), and suppose that T N 7 =min (T,7) is

+ : .
continuous’ w.p.t. (Te werel, ututement is relative to 1) on C[0,T7.

Denote 1 = inf {41 ¢ ‘(fi:) £ C). Then

™7t Mty h
Exf k(x )ds = Llim B, J k(" (s))da
0 " h-0 %0
(10a)
N -1 :
h !
h h
= lm B X k(£ )e ()
hoo * g0 ©° B°S \
EQ (Xp.) = Lim B g (£" () = 1:unEc"(§Nh) (10b)

h -0 h -0

+'I.‘ Nt is a function of the path x.
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Theorem 3, Assume the conditions of Theorem 2, and let, for
SRR

some to < o,

h
Px{gk leaves G

, 8t least once by time t.)) 2 M, >0 (11)

0

where My is independent of x e Gy and h >0, for small h, Then

the vh(x) given by (ld) converge to (1) as h =0, uniformly in x

in G; i.e., the solutions of the finile difference equations (1b,c)

converge to the weak solution (la) of the equation (1), as h - 0.

The arguments of the example yield Theorem M, which generalizes

Theorem 3 and does not contain (11) explicitly,

4, Example

The conditions imposed in Theorems 1-3 are rather natural for a
large class of problems, and in order to illustrate this, their
validity will be checked for a 2-dimensional problem, It should be
clear that the example is typical of a large class. Although the
basic problem arose in numerical analysis, the apprcach taken here A
as well as the conditions, are probabilistic. Hence, the checking of

the conditions involves probabilistic calculations on the underlying

processes. Let
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&
il

fl(xg)va 8 = o | = oo

(12)

&
!

= fa(x)dt + vz

where v is a constant and the f, satisfy (cl). Let fl(x2) = X,

in G. We seek to solve

LV(x) + k(x) =0 in G
V(x) = ¢(x) on &

(13)

where k(*) and o¢(+) are continuous and bounded,

£=V2 32+f(x)a+f(x)a
T 3 1 &1‘ 2 'FQ"
and G is the box
G = {x: |x,] 54},

Thus (C6) holds for all hy > 0.

Note that £ 1s degenerate and G has corners; hence,
classical theory cannot be used to solve the convergence problem for
(13) as h -0,

Using (6) gives

I
i
I
|




& s aabin, Aol

23
v, (x+e, ) h| :f:ll V, (x-e;h)
vh(X) i —_Q—h-(ﬂ_ 0 -—WT hlfll
Vh(x+62h) v2/2 + h| £, Vh(x-eah) k(x)h

C TR /2 e v/2+h| |

for x on Gh, the grid in Gg on the grid R; - Gh cutside of

G, define
r
Vh(x) = ¢ (x) for X €R -G

We need only show that T N T is continuous w.p.l. (relative
to u) on C[0,T], and that (11) holds. First, we prove the con-
tinuity condition. Let w be a generic point of C[0,T] = Q. Thus
we may write Xy s the value of the process at time t, more explicitly
as xth).

In fact, TN Tt is not continuous everywhere on Q. To see why,
let y, be a scalar process and define T(w) = inf (£ y, (0) 2 &
Consider the path yt(m) of Figure 1. For any continuous sequence

(g (*)) for which y, (o) 2 g (t) T v, (@) uniformly on [0,T], we

have




2k

Thus (T N 7)(w) is not continuous at the w corresponding to the
path y, () of Figure L. However, it is continuous at «.
Returning to the problem (12), (13) refer to Figure 2. It is
clear that if tangencies at the boundary occur only w.p. zero, then,
by virtue of the continuity of xt(as) wep.le, (TN 7)(w) will be
continuous w.pe.Ll. This will now be shown to be the case.
We observe that

(a) for Xp1 > 0, must increase (as time increases)

1t
since dxl = xedt in G. Hence, w.p.l. points on the boundary

section Lh (Figure 2) are not accessible., Similarly for L,.

3
(b) Also, since x5, >0 on L;, the path camnot be

and similarly for L..

tangent on L >

l}
(c) Owing to the dominant effects of the diffusion on
movement in the vertical direction, the points on L5 and L6 are

regular in the sense of Dynkin [2]; i.e.

8'.'lf_:__:n' OPx[X'r € &G, X e € G for all &z €>0} =0 (14) .
N
(@) P {r=1T}=0 %
(€) Bylx, = or 3 =o. i
In fact, (a) - (e) imply the existence of e;(w) >0 w.p.l. '
so that, for T(w) = T, T(w) + €5(w) = T w.p.l. (relative to i
{we () £ T}) and

ry




"

§ A tall
i ~

i r

Pty viey A,
aothan e (‘u’& (“n):‘ ¢ (‘/{;’),(J) p G,} ((D) .

(£) Since x, is continuous, w.p.l., there are

t
ei(w) > 0, wep.l., € (w) >0 w.p.l, s0 that

distance (x exterior of G) = €, (w),

- J
5 65(a0
for all ¢ ¢ 7v(w) if t(w) = T.

Now, denote by NO the sum of the exceptional null sets in

() - (f). Let weO - N, and T(w) £ T. Let [gn(t)] in

C[0,T] satisfy (as n — o)

sup [gn(t) - xt(w)l - 0,
OstsT
Let € > 0 be arbitrary. Then by (a) - (f), for large n, the first
time gn(t) leaves G must be within € of 71(w). This proves the
continuity w.p.l. of T(w) N T= (v n T)(w).
Only (11) remains to be proved. Let N = tO/thz, for any

to > 0, and define

M;(g) = number of positive steps of gi 03 k=N
b

M (&) = number of negative steps of gi Y k =N.
- ’

A sufficient condition for (11) is
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qh(x) = Px(M (8) - M () = )z M, > 0. (15)
For some real K, we have the bounds,

1 h  _,h _ .. _1
oKL s Pty bgp =Bl Szt K

Let (ui] be a Markov process on (0,t1,%2/,,,} with transition

probability

h h 1 h _ .h
Plogyy = % ¥ 1) =5 - K= 1= Blyg, =y - 1)

Define M, (u) analogously to Mt(g). Then

W (x) 2 q (x) = POM () - M (u) = 24/h).

The mean value of «u£+l - ui is -2Kh, and its variance is 1 - (2kh)2. :

Now

M, (u)-M_ (u)-N(-2kh) _2a /h+2Nkh \

N £-(2Kh)2 N Jl.. (2Kh)E }

(x) = P

vl

The left term in brackets converges in distribution to the
normal zero mean and unity variance random variable, and the right

hand term in the brackets is strictly less than some K5 < o Tfor

small h, Thus, for all small h i E
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® 2
qy (x) = qh’u(X) 2 —2— [ exp - éy dy,

27rK3

which proves (11).
The crucial step in the proof of (11), the bounding of the

drift in one direction, can easily be generalized. In fact, (11)

holds if
0 0
a =
0 Zo
1

where Z; has uniformly bounded terms in G.

In fact, the example can be generalized to yield (The proof is
a combination of the arguments of the example and of Theorem 3 and
is omitted.)

Theorem 4, Assume (Cl) - (C3) and (C6), Let oG = B, + B,y Where

1
in the sense (14) of

points on Bl are regular for the process X,

are inaccessable w.p.l. for ‘the process x

Dynkin [2], and on B

2 t°
If k(-) and ¢(.) ere continuous on a neighborhood containing G,

then Vh(x) - V(x).




APPENDIX

The proof of Theorem 1 will be developed via a series of lemmas,

The symbols K or K, are used for any constant; values may change

i
from usapge to ucage,

Lemma 1. Assume (Cl) - (C3). Define the process {nl}z} with

initial condition qg = go = gg and

h h hy. . h hy h
Mer = M ¥ M)A + olny)ay

h_ . h,h _
where ./.\‘bk = At (gk). Let N = '_I,‘/,KQSh

h . h2 :
sup E[n, - €| =0 (AL)
Nzk=0

as h -0, Define nh(t) as_the linear interpolation of n::, i.e.,

h h
<
for tk =t < tk+l’
h h
h h (t_tk) h (tk-f-l-t)
no(t) =0 (b, )—p—t 0 (b )—p— .
A'bk A‘bk

Then if the multidimensional distributions of the process nh(t)

have limits, so do those corresponding to the limit of the gh(t)

process and they are the same, (Note that the 111}: and gﬁ' equations

2
differ only in that 21];/ is replaced by its limit o.)

Proof, Let .?h " be the minimal o-algebra over which
2

A ——————
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(w, 1 > k) is measurable. For simplicity of writing, we drop the

index h on n?, g?, At?, w?, 'gm,k’ etc, whenever no confusjon will arise,

measurable, and we use the

Both & and 70, s sk are 5{{

notation Aty = At(gk) . From
ﬂk+l - §k+l = ﬂk = gk + [f(ﬂk) - f(gk)]Amk + [U(Hk} - oh(gk)]wk’
we can write

M1 = Bl - bial” = 04 + 2B(y - £)72() - £(8,)186,)
+ E|£(n,) - £(8,)| %6 + Bgfo(n,) - o(e,) ] [o(n,) - o(&,)la
+ E{[agplo(n) - o(g, )] [o(ky) - o, (&, )]0, )

+ Boylo(g,) - o, (&)1 [0(,) - o, (6,) oy
=A+B+C+ D+ E,

Using the Lipschitz condition (Cl), and (C2), yields, for some

real K,

A s M (1+2K5, )
B s KMksi
KM, B

2
KBth + Kahlc(gk) = ah(gk)l

o
¥

Q

A

=
A

|

K5h|a(§k) = Uh(gk)le‘

=)
1A
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‘Thus

, e .2 ol o 2

My * Mk(l""hsbh"'xlfh) * K5E|U(€k) - Oh/ "k)l 5h
and
N

o N 2. .5 2

Then {(Al) follows from (Ck) and
T/K,.5

Finally, since the number of terms of the process {gﬂ] which
effect the gh(t) process on [0,T] is at most 'I‘/K25h and at
least T/Klﬁh, and since M, -0 uniformly as h -0, for k s N,
we have

Ble™(6) - n°(4)]2 =0

on [0,T], as h - 0. Q.E.D.

iy

Lemma 2, Assume (C1) - (C3). Let N = T/K25h, n = t/KESh.

Then for n = N,

I
I
I
|
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B max [£1% 5 k(e] ) %) e
nzkz0 '

k2 B2
Bmex |gy - 6517 % Kb (L] 1)),
ngkz0

where K is a real number. The same result holds for the {qi}

process,

Proof, Again drop the index n on g?, n?, Ax?, mg, etc,, where
convenient., Then

bl = S0 T At By

K K
Ay = % £(8;)ab;, By = % op (85 )y«

By (8b-c), the o

uniform in h for small h) and are (bounded uniformly in h for

also satisfy a uniform Lipschitz condition (also

small h). Write Y =max |€¢.| and M = EY.

k=i
Now
e, l” = K(egl + 1A% + |B,1%) (a2)
i
and
- o Kk k 2
r n:féo“k' I eeg)an| < K2 Q4ey])5, (43)
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Further, Bk is o martisgenie und (Doob [L], Chapter ')
E mex [B | - KE| B 12, ng | o, (& )|26
O nt C st pt g h
nke0Q 0
(AL)

o 2
K f-,’ (L] e, 70,
Combining (AZ) - (A#H), taking -xpocbations, and replacing Elgile by
the majorant M,, yields

n
o &3 a 2 4 r
Mo % KM K(nﬁhknﬁh—!}é Mkah), (AS)

which is bounded above by the expression given in the lemma for

2
E max lgil .
n+12k>0

The proof of the other siatements of the lLemma are similar and
are onitted. Q.E.D.
We next compare nh(t) to a process whose distributions are

easier to relate to those of x

”
Divide [0,T] intc intervals with endpoints O,A»EA»...,NAA
where A >> K8 . Recall the definition t = :izm?. Define
ng = 0 and the (random) integer n? by n? = max {n! tﬁ = iA).
Define the sets of integers
h ..h _.h _.h
T (ri t ; = tr <t i+l}.

E ol

— ram— M~y

I
i
I
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Again, we drop the index h where convenient. Then (using n, for

n?, ete,)
A - 2K 8 =t -t s A+ 2K 8
1l h ni+l ni Lh
and

oAb =t -t .

rel, © w1 M
Cov 2, Wy = IE(tn. 'tn.)° (A6)
reIi i+l 1

Let '§O = Tgs and for each h define the process

Ve =T+ E0R) I st 4 0Fy) T o (A7)

. S
S€ly 1 S€lpi1

Lemma 7, (Again, omit index h, where convenient), Assume

(1) - (c3). Then

lim  sup E|¥, -7
h -0 k20

nk| = 0. (A8)

_I_,e;t_ ;(t) be the linearly interpolated process with S;(tn ) = ;ri.
' i
Then the multidimensional distributions of nh(t) tend (as h - 0)

to the limit (s h — O, then A —0) of those for the process y(t).
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Proof, Let ek =¥ - nnk. Then ;

€1 = G % [ka) - £(ng)lat, + se?[: [0(¥) - o(ng)lag.
S€ k+1 k+l

2
Ele,, | =M, =M +A+B+C

where (unindexed sums are over s € Ik+l)

o
il

E|Z [£(3,) - f(ns)]/-k‘osl2
A/K26h
E( % 4ts)E s§o |£(¥) - f(nnk,,s
A/K28h ,
K Iy Elen [ R e

K(L\)QMk + KA5,

A

&,

A

%)z,

A

where Lemma 2 is used in the last step.

o
il

E|Z [0(F,) - o(n )l |®

B oGy - alng)|Zat,

NKQ 5h

0

2 2
|~ + Eln l )Sh

nk mers” iy

§,KAMk+KA2,

where, again, Lemma 2 is used in the last step. !

" b o i3
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Q
It

B 2T [£(¥,) - £(n,)]at,

k%l 1P HE (26 - £t |

Q
178

&/K8y, /K8y
[ 2

1/2 ~ 2
B & E|yk'"s+nk' O]

s
KMk s=0 s=0
/2 2 3,1/2
éKMi [MA + KA7]
éSKAl‘dk+KA5/2,

1/2

where the second step used the bound

~ 2 ~ 2 2
Bly,-ng.,|" 5 KE|y,-n_ | + KE|q___ -n_ |
k s+pk k nk s+nk nk

s KMk + KA

end whore the last step used a bound EM <K, for k s T/A which
is derivable by the method of either Lemmas 1 or 2,

Thus

IA

M_(1+K,4) + K5A5/ 4 M =o, \

v

LA

PN which implies

1A

K), (T)Al/ 2, k = 7/A | (A9)

M

S

where K, depends only on T and the constants in (C1l) - (C2).
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(Ad) wnd Lhe ot obabonent of the lemma follow from (A9) and

Lemma 2. Q.T.D.

Lemma ‘+,  Anpume (L) to (0%). Define
w R S I PTG To— L

Foopor vt Mn)a - o(yy)oe,

where 0z, = where 2z, is a vector Wiener process

k= ZRARA T PRl %

<Ezt21': = It)., Then the distributiong of (S;k) converge to those of

{y,}) as h -0 (for fixed 4).

Proof, A proof can be easily modelled along the lines of the

proof of part of Theorem 1, p. 595 [5], and we only sketch the out-

line., Write a>K= y

where 331«: has the dimension of the

, 0 0
O’O(X) in (C3). Since o(x) = , only the sequence [mk}

0 9 (x)

enters into the definition of the sequence {?}k], and we can write

!

Ve = ¥ + T (B -t ) + oy )y (AL0)

nZk;+l K

where




st
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and
e = X Z’s'
sel
k+1
Let % have dimension r o' Suppose that, for all uniformly
bounded (by, say, K) r,-vectors (\], we have
1
lim E exp Z‘. i exp - = L MAA. (AL11)
it Mk 2 My

Then the multidimensional distributions of (uk) converge to those
Of ( (zkA"’A—zkA)} L]

Gikhmen and Skorokhod used the property (All) to prove (in a
relatively straightforward way) that the multidimensional distribu-
tions of {yk} converge to those. of [yk}. (See Lemmas 2.3, p. 599-
601 [5] , and the proof concerning convergence in distribution of
[n;('rk)} to [ng('rk)} on p, 601-602,) Of cou.sse, in [5], the n:
is scalar process (the vector extension is straightforward) and the

coefficient of f(ﬁ}k) is A. But, since |t | »A uniformly

nk+1 “k

in all variables as h - O, the proof can easilyibe modified to
account for this minor difference, |

Thus we will only prove (All), First, let us introduce some
notation, Let T/A = m, and divide each :mterval [14, iA+A]
(i=0, ¢es,m-1) into sublnterva.ls of length b, where b -0 as

h
h -0 and bh/sh - o, Define the sets of :|.nd1ces (subsets of Iz) Ip

\

'

£
i
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by
T, = (st ¢ [(2-1)a + (r-1)by, (#-1)A + rbn)}
L= Llyeas,my, v = ;L,...,A/bhr Detiine
T T
br LB
DeI'er
Letr u and be the ith components, resp., where
br,i 8,1 ’ s ™
i=r -1yt lyeas,r (the last o components), (Note that
u, = Z uﬂ,r')
rl
Next, we show lim S _ . = O where
h,1
h -0 ’
m APy,
2
s, ;= L T Ju, 5 (a12)
’” A=l r=1L ?
for some 1> 08 > 0, In fact.
A
T 240
1S} = max
h,i B‘r:ﬂ,r | 21‘,1'
and }
fr, i N s,1 =Ko s,1
seIh‘ KQ h S"Izr ’ !
2+0 v
s Kb, oh™ /K55, ,

SER A A ftmicn ot i ..
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where | J fKh ds used, =1 - T+ lyees,r. The inequality
)

|, il SKhy i=1r ~1r, + lyce.,r frollows from
b4

o
B = [0g(8) + o2y NE, | - B - Fe)an, + 0(n)]

which, in turn, follows from (8b,c) and (Cl) - (C3). The O(+) ‘terms

are uniform in 5k? and g,f arce the last r. components of ¢,f

0 ’

resp. Then

T h
S é K"—' * "‘)Oo
R
Let F(m-1) denote the least g-algebra measuring all

Upyeeeydy o 80d let  F(m-1,t) be the least o-algebra measuring, in
A

addition, W .,ese,u o Let o = v and recall m = T/A, Thus
F(m-1,7-1) measures all the u,. except for the last one u .
Now,
y _
E[ exp 1Ahﬁ%J“970n 1)]
v-1 b

E[exp i\) % umsl.?(m-l)]E[exp iru | F(m-1,v-1)]

A"Bc

i

o
B=E[(+iMNu o - —— +- € )| F(m-1,v-1)]

where




4o
~ 248
«: [ ]
!emvl g Klympmyl .
Since E[umvl F(m-1,v-1)] = 0, and
o]
‘ R 11 “l Flmol v _ '
b MA - KE T B[ )] F@m-l,v-1)] § b MA o+ KBy
we have
AN Db AMA D
mmh < T - mm h
(l -—-E-—- an!) ::Bé (l ~-—-2——+ va)
where th is a real numbev
2+5
My = Kah + K max 'Lﬁumv' .
m,V
Thus
MA D 1
~ m'm hy
AB = A(L - —5—)+ M
where \

A
L]

lMﬁvl My

Atk

Continuing the procedure gives




T b A U ORI
) .

e

yiword

[Ty

|
|

L],

AAD
AB = (1 - .ﬂéﬁ.ﬁ)v + M
N v
'Mh| * SEiMms'

Similarly,

m m AA LD
. 274 h\v =~
exp i L aMu = JI(L - Y + M
___l"k“k Rl

m v
M = £ ZwM,.
g=1 r=1 *F

r
But |M s X KS, ; » 0. Thus, we have proved (All)., Q.E.D.
i=r-r0+l st

Lemma 5, Assume (Cl) - (C3). Let {yA(t)] be the linear

interpolation of (y,}. The multidimensional distributions of y™(t)

converge to those of x

& .EE A -0,

The proof is well-known and is omitted,

Proof of Theorem 1, By Lemmas 1 - 5, the finite dimensional

distributions of gh(t) converge to those of Xy at points of

continuity of the latter (for t s T). (9) follows from Lemma 2, Q.E.D.

Proof of Corollary 1. If F(-) were cortinuous on C[0,T] = Q,

then the Corollary follows from Theorem 1, p. 58l [5], since our
Theorem 1 assures that the conditions of the cited theorem hold.

Corollary 2, p. 579 of [5] asserts that the distribution of F(gh(-))




L2

converges to that of F(x (»)) for all F(e) continuous w.p.l. on
c[o,T] if (a) the multidimensional distributions of gh(t) converge
to those of x,, end (b) the measures W, are weakly compact. (a)

is implied by Theorem L, and (b) is also - since, by the proof of
Theorem 1, p. 58L, [57, wesk compactness of {un} is implied by (9) (or,

equivalently, by equicontinnity of x, on [0,T] with probability

1
erbitrarily close to 1), The last statement of the corollary follows from

the previous part of the corollary., Q.E.D.

Proof of Theorem 2, By (C6) the last two terms of (10a) are

equal, and so are the last two terms of (1Ob). By hypothesis,
w(xTnT) is uniformly bounded w.p.l., and T N T is continuous w.p.l.
is

(relative to u). x, is continuous in t w.p.l. Hence, X

continucus W.p.l. on C[0,T]; hence, ¢(x is. Thus, by

Tﬂw)
Corollary 1,

E.9 (§h('m'rh)) = B9 (xp, )

as h -0,
A gimilar conclusion for the convergence of the integral term

follows from the continuity of

t
é k(xs)ds

in t. Q.E.D.




g
. ;'

b3

Proof of Theorem 3., Define P(n,h) = inf Px{'rh % nt). Then
X
by (1l1),

P{n+L,h) 2 (1-B(n,h))My + P(n,h)

2 My + P(n,h)(1-M)).

Thus
1 - P(n,h) s (l-MO)n (Alk)

which implies

J 'rthx('rh) - 0
T
as T - e, uniformly in x,h. Furthermore,

T n
E, ] k(& (s))as »0
Tﬂ'rh

B o (M (M7,)) - @(e%(z,})] » 0

as T - o, uniformly in x,h, (Al5) and Theorem 2 imply the Theorem.

Q.E.D.
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